今年,因为疫情原因上海高考延期一个月举行,于7月7日,也就是今天开考了,
以下是小编为大家收集的关于2022上海高考数学真题及答案的相关内容,供大家参考,希望对大家有所帮助!,,
2022年上海各科目考试具体时间安排,,
2022年上海高考数学试题,(更新中),
2022年上海高考语文试题答案,(更新中),
由于2022上海高考数学试卷及答案尚未公布,如有公布,小编将第一时间为大家更新,敬请关注!,
如何学好高中数学:化被动学习为主动学习,初中阶段,特别是初中三年级,老师会通过大量的练习,学生自己也会查找很多资料,这样就会把自己的数学成绩得到明显的提高,这样的学习方式是一种被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且初中数学的知识相对比较浅显,学生很快就能掌握知识。可是到了高中以后通过题海战术是能提高一些对数学知识的掌握,可是对于这个知识中的为什么就不能说出其所以然,就不能对相关的知识进行创新。所以高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。要做到这样就需要学生本身更加主动的学习,这样才能更加的发现数学中的乐趣。,
如何学好高中数学:尽可能掌握更多的知识,数学的学习是需要老师的引导,在引导下,学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高学习效率,就需要学生做到以下一些:,1、做好预习,提出问题,进行多次阅读课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的知识,如果不能回答的问题可以在老师讲课中去解决。,2、学会听课,在初中的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让学生去掌握,可是到高中以后,老师对于一个知识点就不会再通过大量的练习来让学生去掌握,而是通过一些相关知识的讲解去引导学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果学生能明白的话就能在自己的知识下通过课后的练习去巩固这些知识,同时学生也可以根据老师的引导去扩展知识。,当然,对于自己在听课过程中一下子不能明白的知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习就可能学习到更多的知识。,
2022年高考数学万能答题模板,选择填空题,1.易错点归纳,九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。,针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。,2.答题
方法,选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。,填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。,解答题,专题一、三角变换与三角函数的性质问题,1.解题路线图,①不同角化同角,②降幂扩角,③化f(x)=Asin(ωx+φ)+h,④结合性质求解。,2.构建答题模板,①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。,②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。,③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。,④
反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。,专题二、解三角形问题,1.解题路线图,①化简变形;②用余弦定理转化为边的关系;③变形证明。,①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。,2.构建答题模板,①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。,②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。,③求结果。,④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。,专题三、数列的通项、求和问题,1.解题路线图,①先求某一项,或者找到数列的关系式。,②求通项公式。,③求数列和通式。,2.构建答题模板,①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。,②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。,③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。,④写步骤:规范写出求和步骤。,⑤再反思:反思回顾,查看关键点、易错点及解题规范。,专题四、利用空间向量求角问题,1.解题路线图,①建立坐标系,并用坐标来表示向量。,②空间向量的坐标运算。,③用向量工具求空间的角和距离。,2.构建答题模板,①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。,②写坐标:建立空间直角坐标系,写出特征点坐标。,③求向量:求直线的方向向量或平面的法向量。,④求夹角:计算向量的夹角。,⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。,专题五、圆锥曲线中的范围问题,1.解题路线图,①设方程。,②解系数。,③得结论。,2.构建答题模板,①提关系:从题设条件中提取不等关系式。,②找函数:用一个变量表示目标变量,代入不等关系式。,③得范围:通过求解含目标变量的不等式,得所求参数的范围。,④再回顾:注意目标变量的范围所受题中其他因素的制约。,专题六、解析几何中的探索性问题,1.解题路线图,①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)。,②将上面的假设代入已知条件求解。,③得出结论。,2.构建答题模板,①先假定:假设结论成立。,②再推理:以假设结论成立为条件,进行推理求解。,③下结论:若推出合理结果,
经验证成立则肯。 定假设;若推出矛盾则否定假设。,④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。,专题七、离散型随机变量的均值与方差,1.解题路线图,(1)①标记事件;②对事件分解;③计算概率。,(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。,2.构建答题模板,①定元:根据已知条件确定离散型随机变量的取值。,②定性:明确每个随机变量取值所对应的事件。,③定型:确定事件的概率模型和计算公式。,④计算:计算随机变量取每一个值的概率。,⑤列表:列出分布列。,⑥求解:根据均值、方差公式求解其值。,专题八、函数的单调性、极值、最值问题,1.解题路线图,(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。,(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。,2.构建答题模板,①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)。,②解方程:解f′(x)=0,得方程的根。,③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。,④得结论:从表格观察f(x)的单调性、极值、最值等。,⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步。, 2022年全国新高考1卷数学真题及答案详解, 2022新高考数学真题卷及答案, 2022全国新高考Ⅰ卷(数学)真题及答案解析, 2022年全国Ⅰ卷高考数学试题及参考答案公布, 2022年全国新高考1卷数学真题及答案解析, 2022年全国新高考1卷数学考卷真题及答案解析, 2022年全国Ⅰ卷高考数学试题及参考答案出炉, 2022年高考真题全国新高考1卷数学试卷及答案解析, 2022新高考全国1卷数学真题及答案, 2022年高考数学试题及答案(新高考二卷)