施密特正交化 施密特正交化方法:02

   日期:2023-04-29     作者:info     移动:http://mip.ourb2b.com/news/460936.html

施密特正交变换是什么?

施密特(Schimidt)正交变换把一组线性无关的向量变成一单位正交向量组的方法

所谓正交,在平面几何里就是垂直,在一般的空间里是指向量内积为零.

具体正交化过程:

设(a1,a2,……an)为任一组向量,(b1,b2,……,bn)为一组需要得到的标准正交基,则

1、标准化第一个向量,令b1=a1/|a1|

2、递归公式:bn=an-(an,b1)b1/(b1,b1)-(an,b2)b2/(b2,b2)-……-(an,bn-1)bn-1/(bn-1,bn-1)

注:这里如(bn-1,bn-1)形式表示bn-1,bn-1两个向量的内积.

施密特正交化公式是什么?

施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。

正交向量组简介:

正交向量组是一组非零的两两正交(即内积为0)的向量构成的向量组。

几何向量的概念**性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。

在三维向量空间中, 两个向量的内积如果是零, 那么就说这两个向量是正交的。正交最早出现于三维空间中的向量分析。 换句话说, 两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。

施密特正交化是什么?

对于n阶矩阵,正交变换求正交矩阵时,如果同一特征值的特征向量没有正交,则需要施密特正交化使其正交。

施密特正交化(Schmidt orthogonalization)是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化。

线性代数:

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。

线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

什么是施密特正交化?

施密特(Schimidt)正交化

将任意给定的线性无关的非零向量组             

化为正交向量组的方法

第一步:正交化——施密特(Schimidt)正交化

第二步:单位化

Linear Algebra

截图《Linear Algebra》

免责声明:施密特正交化 施密特正交化方法:02来源于互联网,如有侵权请通知我们删除!
本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请通过网站留言/举报反馈,本站将立刻删除!
 
 
更多>同类行业

推荐图文
最新发布
网站首页  |  网站地图  |  网站留言  |  RSS订阅  |  违规举报